
Easy As Child’s Play:
An Empirical Study on Age Verification of Adult-Oriented Android Apps

Yifan Yao, Shawn McCollum, Zhibo Sun, Yue Zhang∗
Drexel University, Email: fanfannnmn@protonmail.ch, {sem445, zs384, yz899}@drexel.edu

Abstract
The rapid growth of mobile apps has provided convenience

and entertainment, including adult-oriented apps for users 18

and older. Despite various strategies to prevent minors from

accessing such content, the effectiveness of these measures

remains uncertain. This paper investigates these mechanisms

and proposes a novel detection solution: GUARD (Guard-

ing Underage Access Restriction Detection). GUARD de-

termines relevant components (e.g., those that can accept

the user’s age or birthdate) based on the spatial relation-

ships of the components in a layout and tracks the data flows

through taint analysis. Recognizing static analysis limitations,

GUARD also dynamically interacts with apps to identify

age-related input components, which are then used for pre-

cise taint analysis. Our analysis of 31,750 adult-only apps

(out of 693,334 apps on Google Play) reveals that only 1,165

(3.67%) implement age verification, with the majority relying

on the weakest method, the age gate (which simply asks users

if they are over 18). Even apps with stronger age verifica-

tion (e.g., document uploads, online ID verification) can be

bypassed using simple methods like false IDs or fake docu-

ments. They can also be circumvented through accounts from

services without age checks (e.g., OAuth abuse) or by exploit-

ing regional differences via VPNs. This paper also proposes

countermeasures to enhance the effectiveness of age verifica-

tion methods, which received positive feedback from Google

through our email exchanges.

1 Introduction

The rapid growth of mobile apps has brought significant

convenience and entertainment to users worldwide, spanning

various age groups and interests. Among these, adult-oriented

apps (e.g., “17+ apps”) occupy a unique and often controver-

sial segment of the app market. These apps are specifically

designed for adults, typically requiring users to be at least

18 years old due to their content or services (e.g., dating

∗Corresponding author: Yue Zhang.

platforms, gambling). Those apps are deemed inappropriate

or harmful for minors. Studies have shown that children

who frequently view mature content are at a higher risk

of developing anxiety and depression [6], and engaging in

inappropriate conversations and actions [50]. One study from

the National Center for Missing and Exploited Children even

shows that a significant number of missing children were

enticed online through adult-oriented apps [16].

To prevent children from accessing adult content, various

strategies are implemented worldwide. For example, the Chil-

dren’s Internet Protection Act (CIPA) in the U.S. requires

the implementation of internet safety policies [17], includ-

ing technology protection measures to block or filter obscene

content and content harmful to minors. In China, the gov-

ernment employs a combination of legal (e.g., Cybersecurity

Law [15]) and technological measures to control adult content.

Many Chinese apps require real-name registration for inter-

net users, which helps enforce age restrictions. That is, users

must provide their real names and national ID numbers when

registering for those adult-oriented apps, with the information

being cross-checked against government databases [28].

Despite the implementation of numerous policies and tech-

nical solutions to restrict minors’ access to adult content,

the adoption and effectiveness of these measures remains

questionable. This paper aims to address the gap in our un-

derstanding of the ecosystem of the adult-oriented apps and

enforcement effectiveness of age verification mechanisms in

these apps. To that end, a tool that can effectively identify the

age verification mechanism enforced by these adult-oriented

apps is crucial. However, currently, there is no tool that can

achieve such a goal to the best of our knowledge, and design-

ing such a tool is subject to multiple challenges.

Specifically, unlike some resources (e.g., location) that

can be directly accessed through Android APIs and readily

identified by programming analysis tools, Android does not

provide interfaces for retrieving the user’s age. Consequently,

apps may employ diverse methods for age verification.

Directly searching for keywords like “age verification” or

“birthday” often results in high false positives. Taint analysis

offers a potential solution by tracing the data flow of collected

inputs of interest (e.g., age) to determine if they undergo

verification checks. However, determining and distinguish-

ing between taint sources and sinks presents significant

challenges. We cannot indiscriminately designate all UI

components containing strings such as “age verification”,

“age”, or “birthday” as either taint sources or taint sinks.

For instance, these strings may appear in UI elements that

serve as input boxes accepting user input (the desired UI

components), text labels providing instructions for user

interaction (e.g., “please enter your age in the input box
below”), or dialogs displaying verification results (e.g., “age
verification fails”). Dynamically loaded strings downloaded

from servers further complicate static taint analysis efforts.

To address these challenges, we propose a tool named

Guarding Underage Access Restriction Detection (GUARD),

designed to identify age verification mechanisms within

adult-oriented apps. GUARD first extracts and analyzes

UI elements within the application to identify strings such

as “age” and “birthday.” Based on the spatial relationships

between UI components, GUARD determines which

components are relevant and which will serve as taint sources

or sinks. For instance, a text label (TextView) containing

these strings is likely instructing user input (e.g., “please
enter your age”) and is typically located near an input box

(EditText) that accepts user input. This input box (not the

label itself) should be treated as a taint source. Meanwhile,

recognizing the limitations of static analysis in detecting

strings downloaded from the internet, to extract their XML

structure and collect possible components containing dynam-

ically loaded strings of interest for taint analysis, ensuring

a comprehensive assessment of age verification mechanisms.

By analyzing 31,750 adult-only apps (tagged by Google

Play) out of 693,334 apps using our GUARD , we identified

that only 1,165 (3.67%) adult-only apps have implemented

age verification. We also have many interesting findings. For

example, categories such as Finance (which involves gam-

bling) and Business (which may sell alcohol and tobacco)

show higher percentages of age verification, likely due to

stringent regulations. The “17+ rating” by Google is often

inaccurate, with some apps requiring users to be 21 years or

older, and some setting the age limit as low as 16 years or

below. Such lower limits may expose minors to adult con-

tent. Moreover, we found that some apps collect personal

data (e.g., full names, dates of birth, and addresses) during

the verification process to ensure they are interacting with a

real person. However, this may raise privacy concerns, espe-

cially for children who might not understand the implications

of sharing their data. Age gates (which directly ask users if

they are over 17) are the most widely implemented method

(31.84%), especially in less critical categories like Entertain-

ment and Lifestyle, but are also the weakest, relying solely on

self-declared ages. Conversely, Biometric verification is the

least utilized (8.48%) due to its higher implementation costs,

despite its robustness.

To make matters worse, we found that even for those apps

that implement age verification, the verification can be by-

passed “as easily as child’s play.” Our assumption is that the

attacker possesses only minimal capabilities, mimicking the

behavior of a child without advanced technical skills. Even un-

der this scenario, six potential attacks exist, including simple

methods such as inputting false IDs or uploading fake docu-

ments. Attackers can also gain access to these age-restricted

apps through accounts from other services that do not enforce

age verification (OAuth Trust-Chain Abuse) or by using a ver-

sion of the app in other countries via VPNs (different regional

regulations allow users to access less restricted versions of the

same app). We also noticed that shopping apps had the highest

vulnerability rate (91%), with 52% relying on age gate.

The contributions of the work are summarized as follows:

• We are the first to technically (not based on policy and

regulation analysis) analyze and explore the inadequacy

of age verification mechanisms in adult-oriented mobile

apps, highlighting the risks posed to minors who might

access inappropriate or harmful content.

• We propose a novel tool, GUARD , designed to identify

age verification mechanisms within mobile applications.

GUARD leverages static analysis to detect relevant UI

components, while the dynamic behavior analyzer is em-

ployed exclusively to load runtime-dependent data. Once

the necessary data is captured, static analysis is reapplied

to complete the process.

• We conducted a comprehensive evaluation of adult-only

apps, examining their categories (RQ1), download popu-

larity (RQ2), app ratings (RQ3), and developers (RQ4).

We also assessed whether these apps implemented age

verification mechanisms (RQ6). For apps with age ver-

ification, we analyzed the types of verification methods

used (RQ5) and the potential attacks that could bypass

them. Our findings revealed that only 1,165 (3.67%) of

the analyzed adult-only apps implemented age verifica-

tion. Among those, only 8.48% adopted strict biometric

authentication capable of defending against the attacks

proposed.

2 Background

2.1 Adult-Oriented Apps and Regulations

Adult-oriented apps are applications designed specifically for

adults due to their content, themes, or functionalities (e.g.,

sexual material, violent imagery). These apps are widely con-

sidered harmful to minors [6, 16, 50]. Consequently, various

countries have developed regulations to prevent children from

accessing adult content. To gain deeper insights, we conducted

an analysis of regulations across different countries related to

adult-oriented apps. In particular, the regulations were metic-

Regulation Country Year Age AV PC CF P

Children’s Internet Protection Act [17] USA 2006 18+ � � � �
JuSchG [49] Germany 2003 18+ � � � �
JMStV [30] Germany 2023 18+ � � � �
LCEN [23] France 2023 15+ � � � �
Age-Appropriate Design Code [46] UK 2020 18+ � � � �
Online Safety Act [21] Australia 2021 18+ � � � �
Cybersecurity Law [28] China 2017 18+ � � � �
Internet Safety Act [22] Japan 2009 18+ � � � �
Youth Protection Act [25] South Korea 1997 19+ � � � �
Information Technology Rules [47] India 2021 18+ � � � �
Online Harms Act [12] Canada 1997 17+ � � � �
Child and Adolescent Statute [37] Brazil 1990 18+ � � � �

Table 1: Regulations in various countries. Age verification

(AV). Parental Controls (PC). Content Filtering (CF). Penal-

ties (P).

ulously sourced from authoritative official databases and rep-

utable publications to ensure the credibility and comprehen-

siveness of the data. To further enhance the reliability of our

analysis, translations were carefully conducted to maintain

the accuracy and integrity of the original regulatory language.

As shown in Table 1, all countries employ a multi-faceted

approach that includes age verification, parental controls, con-

tent filtering, and criminal penalties. Some states in the U.S.,

such as Utah (Social Media Regulation Act) and Louisiana

(Act 440), have implemented laws requiring robust age verifi-

cation for access to certain types of content, particularly adult

content [42]. These laws often require developers to verify age

through government-issued IDs or equivalent methods. This

demonstrates a global consensus on the importance of robust

measures to protect minors from harmful online content.

Our findings revealed the following: (i) Most countries set

the age restriction at 18, with South Korea at 19 and Canada

focusing on children under 17. In France, 15 years old is the

legal age of sexual consent, which aligns with broader societal

norms regarding maturity and personal responsibility. This

consistency often extends to regulations in related areas, such

as exposure to online content. (ii) Japan and Australia comple-

ment regulatory measures with public awareness campaigns

to promote online safety. (iii) Criminal penalties underscore

the seriousness of non-compliance. For instance, the USA’s

Children’s Internet Protection Act (CIPA) mandates internet

safety measures in schools and libraries, with non-compliance

risking the loss of millions in federal funding [17]. Similarly,

in the UK, failure to implement age verification can result in

fines of up to £250,000 or 5% of turnover [48].

2.2 Age Verification in Adult-Oriented Apps

Currently, the most common technical solution to prevent

minors from accessing adult content is age verification. As

shown in Table 2, age verification methods can be divided

into two categories:

(I) Offline Age Verification. Offline age verification methods

operate without the need for internet connectivity, often lever-

Method Simplicity Reliability Privacy Scalability Accuracy Cost

Offline Age Verification

Age Gate ��� ��� ��� ��� ��� ���
Template-based Check ��� ��� ��� ��� ��� ���

Online Age Verification

ID Number Verification ��� ��� ��� ��� ��� ���
Credit Card Verification ��� ��� ��� ��� ��� ���
Document (ID) Upload ��� ��� ��� ��� ��� ���
Biometric Verification ��� ��� ��� ��� ��� ���

Table 2: Comparison of Age Verification Methods.

High: ���. Medium: ���. Low: ���

aging local databases or algorithms to validate user input: (i)
Age Gate, a straightforward approach where users are asked

to input their date of birth or confirm they meet a minimum

age requirement before accessing restricted content. Its sim-

plicity and ease of implementation make it a widely adopted

solution. (ii) Template-Based Age Verification, a method

involves requesting users to provide a government-issued

ID for more rigorous age verification. The app processes the

provided information by matching it against locally stored

templates or applying algorithms to confirm the user’s age.

(II) Online Age Verification. Online age verification methods

require internet connectivity to validate a user’s age through

various online resources and databases. Common approaches

include: (i) ID Number Verification Services: Users input

their ID numbers, which are then cross-referenced with gov-

ernment or credit records to verify their age. (ii) Credit Card

Verification: This method leverages credit card information, as

credit cards are generally issued only to adults, to confirm the

user’s age. (iii) Document (ID) Upload: Users are prompted

to upload a scanned copy or photo of a government-issued ID.

The system employs Optical Character Recognition (OCR)

and additional verification techniques to authenticate the doc-

ument and validate the user’s age. (iv) Biometric Verification:

This advanced method involves technologies such as facial

recognition or fingerprint scanning. For example, users might

take a selfie, which the system compares against the photo

on their ID or a database to confirm their age.

3 Threat Model and Scope

Assumptions. In this paper, we explore the security practices

of adult-oriented apps in scenarios where a child might bypass

age verification. We assume: (1) The child lacks advanced

technical skills such as reverse engineering; (2) The child

can find and use easily accessible tools (e.g., VPNs, fake

ID generators) to bypass age checks; and (3) The child may

access a parent’s photo ID or device but not their biometric

data, such as fingerprints or facial recognition.

Scope. We limit our scope to Android apps available on

 <RelativeLayout android:layout_marginLeft="@dimen/x28">
 ...
 <EditText android:digits="0123456789xX" android:id="@id/et_idCard" android:hint="@string/id_card"
android:inputType="text"/>
 <TextView android:id="@id/tv_idCard" android:text="Please enter your National ID card number"/>
 ...
 </RelativeLayout>

EditText m = (EditText)findViewById(R.Id.et_idCard)

private void y() {

 String s1 = this.m.getText().toString();

 if (!g.d(s1)) {

 this.e(false);

com.adnonstop.datingwalletlib.frame.c.r.b.a(this.get
Context(), getString(R.string.input_error));

 return;
 }
}

public static boolean d(String s) {
 if (s.toUpperCase().matches("^\\d{17}([0-
9]|X)$")){

LocalDate.parse(s1.substring(6, 14), f);

LocalDate d = LocalDate.now();
 long i = ChronoUnit.YEARS.between(d, d1);
 return i >= 18;

};
 }

if(v == R.id.bt_submit_certification) {

if(com.adnonstop.datingwalletlib.frame.c.m.a.a(
this.getContext()).booleanValue()) {
 this.e(true);
 return;
 }
 this.e(false);
com.adnonstop.datingwalletlib.frame.c.r.b.a(thi
s.getContext(), "Network is unavailable");
 return;
}

c.m.a.bc.m.a.fc.m.a.m

<resources>
 <string name="id_card">"National ID card number"</string>
 <string name="input_error">The information you entered is incorrect.\n Please carefully check if the input is correct</string>
</resources>

Figure 1: The snippet from 21: Virtual Social App shows fragments from string.xml (pink), the layout file (blue), and
Java code (yellow).

Google Play for the following reasons: First, Android is one

of the most widely used mobile operating systems, and its

open nature facilitates easier analysis of app data and usage

patterns. Second, Google Play provides a clear categoriza-

tion system, including a “17+” tag for adult-only apps. Third,

Google Play is renowned for its strict vetting process. Our

insight is that if apps on such a strictly protected market like

Google Play are susceptible to age verification bypasses, the

situation is likely to be even worse in other markets.

4 Example of Age Verification Analysis

Our objective is to conduct a comprehensive analysis of the

age verification mechanisms employed by adult-oriented ap-

plications using program analysis. To achieve this, we will

reverse engineer the adult-only apps to gain insights from

the reverse engineering process. Particularly, in this section,

we will focus on analyzing an app called 21: Virtual So-
cial App (com.adnonstop.camera21), a Chinese adult dat-

ing app that uses national ID numbers to verify user age.

Chinese IDs contain birthdate information in an 18-digit

format, where the 7th to 14th digits represent the birthdate

(yyyymmdd). Users must enter their ID during registration.

As shown in Figure 1, the code snippet defines attributes

for an EditText element that collects the ID. The attribute

android:digits="0123456789xX" restricts input to num-

bers and specific characters, ensuring the ID format is correct,

while android:id="@id/et_idCard" provides a unique ref-

erence for use in Java code.

The code in the yellow boxes are the Java code. The

code fragment findViewById(R.Id.et_idCard) finds the

EditText element with the ID et_idCard in the layout and

assigns it to the variable m. The code fragment g.d(s1) is

a method that verifies the user’s age, and if the check fails,

the app displays an error message to the user, informing the

user that the information entered is incorrect and prompting

the user to check the input. The age verification is performed

both online and offline. (i) The offline calculates the user’s

age by comparing the extracted birthdate with the current date.

This is done by subtracting the birth year from the current

year and adjusting for whether the current date is before or

after the user’s birthdate within the year. If the calculated

age meets the minimum age requirement (i.e., 18 years or

older), the system grants access to the application. If not, ac-

cess is denied. (ii) In the online age verification process, the

national ID number provided by the user is passed through

multiple classes within the application. These classes create

a network request (which includes the ID number) that is

sent to the back-end server. Upon receiving the request, the

back-end server performs the necessary verification checks to

validate the ID number against a national database or another

authoritative source. This may involve cross-referencing the

ID number with stored records to confirm the user’s age and

other details. If the verification check fails, indicating that the

user does not meet the age requirements, the server will refuse

the user registration attempt and send an appropriate response

back to the application. In this case, the failed cases (either

failing the offline check or the online check) will present the

user with a string, which is linked to the string whose id is

input_error in the strings.xml.

5 GUARD Design

Based on the motivating example, identifying age verifica-

tion requires processing UIs to recognize elements and track-

ing code flows to understand constraints and behaviors. As

shown in Figure 2, we introduce our tool, GUARD (Guard-

ing Underage Access Restriction Detection), with three main

components:

• Static UI Processor (§5.1). The UI processor identifies

and records UI elements that collect specific user inputs

(e.g., national ID, date of birth). It parses the APK to ac-

cess layout files, mapping elements to inputs and saving

only the IDs/types of elements directly involved in data

collection.

• Static Behavior Analyzer (§5.2). The behavior analyzer

identifies entry points and analyzes age verification. It

uses the IDs and types from the UI processor to locate

relevant Java files and applies taint analysis to check for

age verification in the code.

• Dynamic Behavior Tester (§5.3). Static analysis falls

short for app age verification, missing network interac-

tions and dynamically loaded strings from remote back-

ends. Our dynamic tester addresses this by loading app

layouts in real-time, extracting the XML structure of the

current interface, and searching for age verification key-

words. Taint analysis further verifies age verification by

tracing user input and its impact on app behavior.

GUARD was developed using Soot [43], with approxi-

mately 2,000 lines of custom Java code. We chose Soot over

alternatives such as CodeQL [40] or FlowDroid [9] primarily

due to our familiarity with Soot, having previously built sev-

eral projects on it. Nevertheless, the core concepts underpin-

ning GUARD are adaptable to other platforms like CodeQL

or FlowDroid. Soot provides robust modeling of essential

program dependencies, including control, data, alias, excep-

tion, and library dependencies. For our analysis, we primarily

utilized control and data dependencies to implement our tool.

Additionally, given the inherent complexity of Android apps,

we use Soot’s call graph to address these challenges.

5.1 Static UI Processor
The UI processor identifies UI elements that take the user’s

input of interest. It works through three main steps:

Step I: Processing Layout Files. The UI processor un-

packs and parses the APK file to access layout files, which

are XML files defining the app’s UI and structure. These

files contain elements like TextView, EditText, and Button,

with attributes such as android:text, android:hint, and

android:contentDescription, which may include age

verification strings (e.g., “age”, “birth”, “verify”, “18”,“Na-
tional ID number”). For instance, in Figure 1, android:text
is set to Please enter your National ID card number (See the

example in §4)", containing the age-related string National ID
number". Regular expressions are used to search these strings

based on their format.

Step II: Processing String Resource File. The UI proces-

Type Example

UI elements accept confirmation input
Confirmation I confirm that I am over 18 years old
Disclaimer Age verification is necessary to ensure compliance
Notice You must be at least 18 years old

UI elements accept concrete input
Hint Enter your age here
Format Explanation Date of birth (YYYY-MM-DD)

UI elements instruct the input
Label Birthdate
Button Text Verify Age Submit
Prompt Please input the age below

UI elements display output
Fail Age verification failed
Success Age verified successfully.

Table 3: Comparison of Possible Age Verification String.

sor extracts the string resource file (strings.xml) because

directly analyzing the layout files is insufficient; many An-

droid apps use the string resource file to store text resources

separately from the layout XML files. In the strings.xml,

each string is assigned a unique ID (e.g., @string/id_card).

These IDs are essential for maintaining a coherent link be-

tween the layout XML files and the strings. To link the refer-

ence IDs in the layout files to the actual strings during analysis,

a straightforward solution is to traverse the XML tree to ex-

tract relevant UI elements and their attributes and then search

for them in the strings.xml file. Once a string of interest

(e.g., "age", "birth") is identified, the ID and the correspond-

ing UI element can be recorded for future reference. However,

this process is time-consuming because there is not a one-to-

one mapping, and many strings are repeatedly referenced. For

example, a string “The information you entered is incorrect.”
can be used multiple times in different contexts within the app.

To save time, we first check all the strings in the strings.xml
to find the strings of interest and then search for their IDs in

the layout files. This significantly improves search perfor-

mance, as each string is iterated only once in the entire search.

The UI processor also extracts hard-coded strings and the

corresponding IDs of the UI elements directly from the app

layout files, as some developers favor this practice.

Step III: Resolving Relationship. The UI processor utilizes

UI elements and their IDs to establish their relationship with

actual inputs (e.g., values related to age such as birthday).

Interestingly, we notice that among those UI elements asso-

ciated with strings related to age verification, some directly

collect the inputs of interest, while others serve merely as

components (e.g., labels) that instruct users to enter the input

of interest into other UI elements. For example, as shown in

Figure 1, the EditText UI element is the element that collects

the input of interest, whereas TextView UI element, although

it contains strings related to age verification, does not collect

any input from the user. Instead, it instructs users to input

their national ID into the input box.

As such, the types of these UI elements are crucial. As

Static UI Processor (§5.1) Static Behavior Analyzer (§5.2)

(Step-I) Identifying Entry Points (Step-II) Analyzing Age
Verification

Dynamic Behavior Tester (§5.3) ResultsApps (18+)

(Step-I)
Processing Layout Files

(Step-II)
Processing String ResourceP

(Step-III)
Resolving Relationship

(Step-I) Loading and
Processing Layouts

(Step-II) Dynamic Path
Exploration

(Step-III) Age
Verification

Figure 2: Overview of GUARD

illustrated in Table 3 , the UI elements can be categorized into

four groups, each serving specific purposes. To accurately

resolve the relationship between these strings and the actual

input, it is essential to understand the context and meaning

of these strings. However, this can be challenging. Different

developers might use different strings or terminologies for

similar purposes. For example, for the “Hint” message, one

app might use “Please enter your birthdate” while another

may simply use “DOB”, requiring us to recognize various

synonyms and patterns. One straightforward solution is to use

a Large Language Model (LLM) [51,53] or other Nature Lan-

guage Processing (NLP) techniques to understand and process

those natural language strings. However, running LLMs can

be computationally intensive and may introduce performance

bottlenecks. We conducted tests on a LLM (i.e., ChatGPT)

and observed notable performance challenges primarily aris-

ing from communication and text generation overhead. Specif-

ically, the process of generating detailed responses introduced

significant latency, which was compounded by the model’s

reliance on iterative token-by-token text output. Additionally,

the communication overhead between the application layer

and the LLM framework, especially during high-frequency

query scenarios, further impacted the overall performance.

Given that each app may contain hundreds or thousands of

strings across multiple files, the solution is not practical.

Our idea leverages the context of the strings within UI

elements (we examine which UI elements contain age

verification-related strings and the types of these UI elements)

to infer their relationship with the actual input. For instance,

if an age verification-related string is contained within the at-

tribute of an EditText element, we can infer that this element

serves as the input box for collecting age verification infor-

mation. As shown in Table 4, we have demonstrated all the

relationships between the UI elements and the corresponding

recorded IDs. To determine the scope of the UI elements, we

conducted an in-depth review of the Android developer docu-

mentation [20]. This systematic analysis aimed to identify all

potential UI components that could be utilized within apps,

with a particular focus on elements such as input fields, but-

tons, dropdowns, and other interactive components. To ensure

a comprehensive understanding, we complemented this analy-

sis by reverse engineering a diverse set of real-world Android

applications spanning various categories and use cases. This

reverse engineering process allowed us to extract UI-related

code and layouts, providing practical insights into how these

elements are implemented in real-world scenarios. Addition-

ally, this approach enabled us to validate the completeness of

our identified scope by cross-referencing documentation find-

ings with actual app implementations, ensuring no significant

UI element was overlooked.

We now discuss how we infer the relationship based on the

types of UI elements and the types of strings:

• UI Elements Accepting Confirmation Input. Using a

confirmation button (i.e., confirmation input) to implement

age verification is a common practice in applications to en-

sure compliance with age-related regulations. This method

requires the user to actively confirm that they meet the

age requirement before accessing age-restricted content or

services. In such methods, the Button or ImageButton
contain age verification strings. Some developers may use

Switch Button or checkbox. The IDs of these UI ele-

ments that can receive user inputs are of interest and will

be recorded for future reference.

• UI Elements Accepting Concrete Input. Implementing

age verification using an UI elements such as EditText
or DatePicker allows users to enter their concrete birth-

date, age, or national ID number, which is then validated

to ensure they meet the required age threshold. In these

cases, EditText will contain the necessary age verifica-

tion strings (e.g., hint information). Some developers may

utilize a DatePicker to enable users to select their birth-

date. The IDs of these UI elements that receive user con-

crete inputs are crucial and will be recorded for future

reference.

• UI Elements Instructing Concrete Input. There are

some components that do not directly accept inputs from

the user but instead instruct the user on how the app may

accept inputs. For this type of component, we observe that

they are usually nested with the actual UI elements that

can receive user inputs. For example, as shown in Figure 1,

the TextView with ID tv_idCard does not accept any

user input, while the EditText with ID et_idCard does.

Both of these UI elements are in the same layout view

RelativeLayout. Therefore, our idea is to record the IDs

of input elements that can receive input within the same

TextView ImageView EditText Button ImageButton CheckBox RadioButton Toggle Switch Spinner DatePicker Dialog Toast
UI elements Acc. Confirmation Input ○␣ ○␣ ○␣ ○ ○ ○ ○ ○ ○ ○ ○␣ ○␣ ○␣
UI elements Acc. Concrete Input ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣
UI elements Instructing Input ○ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣
UI elements Displaying Outputs ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○

Table 4: Relationship Between UI Elements and Recorded IDs. The highlighted one refers to the UI elements with ID recorded.

○␣ refers to the UI element does not contain the string of interest. ○ refers to the UI element contains the string of interest.

layout view as the UI elements containing age verification

strings, which instruct users on how to input. For instance,

in the above example, the EditText’s ID et_idCard will

be recorded, and TextView’s ID tv_idCard will not.

• UI Elements Displaying Output. We will also identify

certain strings that may contain age verification messages,

which are not directly associated with UI elements. For

example, an application might specify a string such as

"Age verification failed" to be displayed when the

age verification process is unsuccessful. These strings may

either not be linked to any UI elements (being used exclu-

sively in the Java code) or may be associated with dialog-

based views, such as Toast or Dialog. Only the IDs of

these UI elements will be recorded for future reference.

5.2 Static Behavior Analyzer

The behavior analyzer works by first identifying entry points

and then analyzing age verification. To be more specific:

Step I: Identifying Entry Points. To identify the relevant

Java implementation, referred to as the entry point, we fo-

cus on Java files initializing UI elements tied to collected

IDs. These elements are typically bound using the An-

droid API findViewById, which links unique IDs to Java

code. Instead of examining hundreds or thousands of Java

files, we begin with the launching activity specified in the

AndroidManifest.xml, as age verification logic is likely

among the first activities a user encounters (Otherwise, it is

easily bypassed). After identifying the offline age verification

logic, we analyze its associated functions to check for an on-

line verification process, as apps often combine offline checks

with online requests. If an online implementation is found, we

stop further analysis, as developers rarely implement multiple

age verification methods in a single app. During this process,

we also identify entry points for apps with hard-coded age

verification strings, recording the corresponding UI elements

for future reference.

Step II: Analyzing Age Verification. In this step, the behav-

ior analyzer examines the implementations of the Java code

from the entry points to statically determine whether the app

has implemented age verification. One straightforward solu-

tion is to use code pattern matching, which involves searching

for specific patterns in the code that indicate age verification

logic. This can include searching for keywords or functions

commonly associated with age checks. However, this method

may miss complex or obfuscated implementations where age

verification is not done using common patterns or keywords.

Additionally, it does not provide insights into the flow of data

or the actual logic used in verification. As shown in Figure 1 ,

in the online age verification process, the national ID number

provided by the user is passed through multiple classes (e.g.,

from c.m.a.b to c.m.a.f) within the application. Such a

case cannot be resolved by code pattern matching. Our idea is

to use taint analysis to construct the relationship between the

source and the sink and pinpoint the verification logic. This

approach enables us to focus solely on the presence of condi-

tional statements, irrespective of their specific implementation

or underlying calculations. For instance, “18+ confirmation”

apps must include conditional statements (e.g., the app ter-

minates if the user confirms being under 18). In the absence

of such conditional statements, age verification mechanisms

are effectively nonexistent. Particularly, by marking sources,

tracking data flow, identifying sinks, and analyzing control

flow, we can comprehensively understand how age data is

handled within the app.

• Taint Sources. Sources are the points in the code where

user input related to age is introduced. These inputs need

to be marked or “tainted” to track their flow through the

application. Specifically, as shown in Table 4 (those high-

lighted in red), UI elements that accept user inputs for

confirmation (e.g., Button) and those for concrete inputs

(e.g., EditText, DatePicker) should be directly tainted.

Additionally, for UI elements that guide concrete or confir-

mation inputs, we taint all UI elements capable of receiv-

ing input within the same layout view as these UI elements.

For instance, in Figure 1, we taint the EditText widget

with the ID et_idCard. This ensures that any input pro-

vided by the user in this field is tracked throughout the

application.

• Taint Sinks. Sinks are the endpoints where tainted

data (i.e., the age input) is used to make decisions or

is presented to the users. Identifying sinks involves

locating points in the code where age data influences the

application’s behavior. There are two possible scenarios

to consider: (i) We mark the conditional statements that

check if the age meets certain criteria, such as i > = 18 as

shown in Figure 1. Additionally, we mark API calls to on-

line age verification services (e.g., HttpURLConnection
or OkHttpClient). It is important to note that when the

check happens online, we cannot obtain the exact logic

of the verification process. Consequently, we cannot be

entirely certain that the input age is used specifically for

age verification. (ii) We also mark the UI elements that

display the verification results as sinks (e.g., “You passed
age verification”). This is to reduce false positive. In

offline verification, there are cases where an ID number in-

cludes the user’s birthday. If we only consider conditional

statements, the app might simply validate the ID number’s

format without checking the age or birthday. By treating

those messages as sinks, we can filter out such cases.

5.3 Dynamic Behavior Tester

Static analysis alone is often insufficient for age verification in

Android applications, primarily because it does not account

for dynamic network interactions and can miss important

elements downloaded from the backend. Many applications

download strings and other resources, such as prompts for

entering age verification information, from remote servers at

runtime. If these strings (e.g., “please enter your age”) are not

embedded directly in the app’s code but are instead retrieved

via network requests, static analysis will fail to detect them.

Therefore, the dynamic behavior tester complements the

static analyzer by addressing this critical limitation of static

analysis: its inability to detect runtime-dependent data. By

monitoring the execution of the application, the dynamic an-

alyzer identifies data that is generated or retrieved during

runtime, such as dynamically loaded information. Once this

runtime data is identified, it is integrated back into the static

analysis pipeline, enhancing static taint analysis by providing

a more accurate and comprehensive understanding of data

flows. While a dynamic-only taint analyzer could provide

runtime insights, our static preprocessing (e.g., resolving re-

lationships between UI components and data flows) ensures

that dynamic analysis is more targeted and efficient. Also, dy-

namic taint analysis alone might fail to account for all paths or

inputs because it requires user interaction simulations, which

may not cover all use cases or edge conditions. GUARD mit-

igates this by combining dynamic observations with static

code insights. At a high level, the dynamic analyzer works

by first loading and processing the app layouts dynamically.

Having collected all the IDs and types of UI elements of in-

terest, taint analysis (which is similar to the static behavior

analysis) is used to confirm the presence of age verification:

Step I: Loading and Processing Layouts. In this step, our

behavior tester dynamically loads and processes app layouts

by automatically installing and launching the application on

a test device or emulator using Appium [8]. This setup mim-

ics real-world usage, enabling interaction with the app as a

user. Upon launch, the tester extracts the XML structure of

the current interface, capturing UI elements, attributes, and

their hierarchical relationships, including attributes such as

android:clickable that indicate clickable elements.

Step II: Path Exploration. This step dynamically explores

the paths and identifies clickable UI elements containing

the strings of interest. Having collected those layout files in

step I, their extracted XMLs are then analyzed for specific

keywords related to age verification (e.g., “enter your age”).

If found, relevant elements and contexts (e.g., IDs, types)

are recorded. Otherwise, clickable elements on the current

interface are identified to explore deeper navigation paths.

This process is repeated iteratively, systematically navigating

through the app’s structure until all UI elements have been

examined (except for those requiring specific inputs, such as a

user-entered password, to access). That is, our UI exploration

focuses solely on clickable UI elements and does not account

for UI elements that require inputs (this is our limitation, as

acknowledged in the limitations in section 8). Please refer

to Appendix A for more details.

Step III: Age Verification. Having collected all the IDs and

types of UI elements of interest, we again use taint analysis to

confirm the presence of age verification. Based on the type of

elements, we determine which UI elements should be marked

as taint sources, and which UI elements should be marked

as taint sinks (please also refer to Table 4 for more details).

For example, we taint the UI element that directly collects

the user’s input. A dialog that displays messages such as

“Age verification failed” is marked as a taint sink. This step

is similar to the step III of Static Behavior Analyzer, and we

will omit the details for conciseness.

6 Attacking Apps with Age Verification

We now discuss how the attacks can compromise the age

verification methods introduced in §2.2. Table 5 illustrates a

clear hierarchy in the effectiveness of age verification methods

against various attacks:

(A1) False Age Self-Declaration. Age gate is a simple and

widely used method for age verification but is easily bypassed

by entering a false date of birth. For instance, a 15-year-old

can claim to be 18 or older. Many apps, including popular ones

like Reddit, are vulnerable to this issue. Reddit requires users

to be 17+ to install the app and 13+ to create an account, host-

ing communities (subreddits), including those with mature

content marked as “NSFW” (Not Safe For Work). However,

users can bypass the age check by providing a fake birthdate.

(A2) Fake ID Number Self-Declaration. Users can bypass

age verification by generating fake ID numbers if the app

only checks their format (e.g., digits representing birthdates).

For example, a Chinese national ID has 18 digits, with the

7th to 14th indicating the birthdate, and a fake ID number

can be generated using tools such as the Random Chinese ID

Number Generator [19]. Some apps, such as Game for Peace

and Fantasy Westward Journey, enhance verification by cross-

referencing ID numbers and names with official databases.

However, this method is still vulnerable to issues like data

breaches and leaked ID numbers, which can be found online

without accessing the dark web 1. For example, we discovered

some websites that released criminals’ information, includ-

ing their real ID numbers. Additionally, we found websites

that published the ID numbers of award winners. For privacy

reasons, we omit links to such websites.

(A3) OAuth Trust-Chain Abuse. OAuth (Open Authoriza-

tion) is a protocol [18] that allows apps to securely access user

information without sharing passwords. In an OAuth setup, a

user can log into one application (the client) using their cre-

dentials from another application (the authorization server).

This creates a trust chain between the two applications. This

attack stems from inconsistent age verification across OAuth

apps. If the authorization server does not enforce age verifi-

cation, a user can use an OAuth flow to authenticate through

an app without age restrictions, thereby gaining access to an

app that does require age verification. For example, Dating

Wallet, a dating app, requires users to be 17+ but allows login

via QQ and Xiaomi accounts, which have no age restrictions.

More details can be found in Appendix B.1.

(A4) Identifier Spoofing. Minors can bypass age verification

systems by using authentic documents belonging to adults,

such as national IDs. They often borrow IDs from family

members or friends of legal age, with or without their knowl-

edge. As mentioned earlier, many national IDs and personal

documents are available online due to data breaches or care-

less publishing. For instance, the dating app Peeks Social only

requires users to upload an ID photo for verification, making it

vulnerable to such attacks (Details can be found in Appendix

B.2). Interestingly, we have found that many online paid ser-

vices provide adult verification with real person-assisted veri-

fication or adult account rental for some games [2,3]. Theoret-

ically, only biometric-based age verification offers relatively

strong protection. However, this method may not always be

secure if the app fails to verify both the user’s age and identity

simultaneously (i.e., ensuring the adult user is genuine and

not someone providing online assistance).

(A5) Age Verification Downgrade. Different regions may

have varying regulations and guidelines concerning age

restrictions for accessing the same app. These discrepancies

are influenced by local laws, cultural norms, and regulatory

bodies (as discussed in §2.1). For example, League of Legends
(LoL), a highly engaging game with strategic depth and social

interaction, has strict regulations in some countries to combat

gaming addiction among minors. The competitive nature

of LoL can lead to toxic behavior, including harassment,

1Although these ID numbers are real, they do not belong to the users

attempting to bypass the age verification. Therefore, we still consider them

to be fake ID numbers

Age
Gate

Template-based
Check

ID Number
Verification

Credit Card
Verification

Document
Upload

Biometric
Verification

(A1) � � � � � �
(A2) � � � � � �
(A3) � � � � � �
(A4) � � � � � �
(A5) � � � � � �
(A6) � � � � � �

Table 5: Summary of Attacks against different Age verifica-

tion Methods

Category Count Pct (%) Category Count Pct (%)

Entertainment 9,455 29.78 Health & Sports 1,028 3.24
Social 6,669 21.00 Finance 560 1.76
Lifestyle 4,239 13.35 Business 536 1.69
Shopping 2,647 8.33 Education 479 1.51
Food & Drink 2,644 8.32 Photography & Editors 466 1.47
News & Books 1,385 4.36 Travel & Local 370 1.17
Productivity 1,126 3.55 Other 146 0.46

Table 6: Distribution of apps w.r.t their categories

aggressive language, and negative interactions [7]. In China,

the government mandates real-name registration and imposes

strict gameplay time limits for users under 18. However, in

the U.S., although LoL is restricted to minors under 13, it

does not have any in-app age verification, allowing minors

to use the app freely. As a result, minors in China can use

a VPN to access the international version of LoL, which does

not have the same restrictions.

(A6) Tool-based Data Manipulation. Some adult apps have

age verification mechanisms that can be easily bypassed using

specific tools. These tools are straightforward to use, allowing

minors to circumvent age restrictions with minimal effort. For

instance, we encountered a tool named “MT-Arknights [1]”,

designed to bypass restrictions (e.g., age and time limits) en-

forced by Arknights, a game that involves mature themes such

as disease, conflict, and ethical dilemmas. The principle be-

hind this tool is to manipulate the data packets involved in

the age verification process. This manipulation is achieved by

establishing a MitM proxy between the server and the client

device. The process requires the user to download and install

the proxy’s certificate on their device to facilitate the inter-

ception of data. Once the MitM proxy is in place, all requests

sent to the server for age verification are intercepted by the

proxy, which then alters these requests and their correspond-

ing responses. More details can be found in Appendix B.3.

7 Evaluation

7.1 Experiment Setup

Dataset. We used the Androzoo [4] dataset to identify adult-

oriented apps based on tags originally sourced from Google.

By analyzing metadata from 693,334 Android apps (May

Figure 3: Distribution of download numbers for age-restricted

apps

Figure 4: The relationship between app ratings and the pres-

ence of in-app products (IAP). Please note that some apps do

not have any ratings.

2024 snapshot, covering 2017–2024), we identified 31,750
adult apps with diverse content, consuming 2,14 TB.

Environment. The experiments were conducted on a server

running Ubuntu 22.04.4 LTS, equipped with 32 CPU cores

and 64 GB of memory. The evaluation itself was performed

on a desktop utilizing 8 concurrent processes.

FP and FN Analysis. We randomly sampled 100 apps cate-

gorized as having age verification mechanisms and 100 apps

without any verification methods. To ensure accuracy, we man-

ually verified the results. Each app was thoroughly analyzed

using a combination of reverse engineering and dynamic test-

ing to assess their age verification processes. As a result, we

have identified three false positives, where the collected in-

put was not used for verifying age. For example, Equestrian
Singles simply asks the user to input a birthday to register an

account, and this information is optional; even if the user does

not input a birthday, the registration can still be successful.

We also identified two false negatives, where the tool failed

to identify obfuscated code and the data flow within the apps.

We believe this limitation exists in all other taint analysis

tools, as it is an inherent limitation of taint analysis.

7.2 Experiment Results

(Q1) What reasons contribute to the designation of

apps as adult-only across different app categories?

To gain a better understanding of the landscape of adult-only

apps and to investigate potential age verification mechanisms

tailored to different reasons for designating an app as

adult-only, we assigned each adult-only app to a suitable

category based on its category tag in the Google Play Store,

resulting in 14 distinct categories. As shown in Table 6,

most apps fall into Entertainment, Social, and Lifestyle,

comprising 64.13% of the total.

By manually analyzing a randomly selected sample of 50

apps in each category, we found distinct reasons for their

adult-only designation. For example, Entertainment (29.78%)

features explicit content, such as sexual and violent material.

Social (21.00%) includes dating and adult chat apps, while

Lifestyle (13.35%) involves mature themes. Interestingly, we

found that the Shopping (8.33%) and Food & Drink (8.32%)

categories may include apps selling restricted products such as

alcohol and tobacco. News & Books and Productivity feature

explicit literature, including joke books. Health & Sports
cover adult health topics, and Finance and Business involve

gambling or adult-oriented services. Photography & Editors
enable explicit content creation, Education covers mature

topics, Travel & Local offers adult travel services, and Other
(0.46%) includes miscellaneous apps.

(Q2) Are these adult-only apps widely downloaded?

The data highlights a significant concern regarding the acces-

sibility of adult-only apps. Apps with higher download counts

and better user ratings are likely to attract a broader audience,

including minors, as these metrics often reflect strong user

engagement and perceived reliability. As illustrated in Fig-

ure 3, the popularity of these apps varies, with the largest seg-

ment (24%) falling in the 10,000–50,000+ downloads range.

Notably, a smaller yet concerning proportion (9%) of adult-

only apps surpass 1,000,000 downloads, demonstrating their

widespread reach and potential risk of exposure to minors.

(Q3) What are the ratings of the adult-only apps?

We analyzed the ratings of these adult-only apps and found

that a significant proportion of adult-only apps fall within

the higher rating brackets of 4.0 to 5.0, as shown in Figure 4.

This indicates that poorly rated adult-only apps are less com-

mon. Meanwhile, given that adult-only apps may require users

to make in-app purchases (IAP) to access full functionality,

which can significantly impact minors who may not be able

to afford them, we conducted further analysis on the ratings

concerning IAP requirements. Figure 4 shows that more than

half of the adult-only apps do not require IAP, and there are

more high-rated (4.0-5.0) no-IAP apps than IAP-required

apps. This suggests that many high-rated adult-only apps are

potentially accessible to minors.

Figure 5: The distribution of adult-only apps across different developers and categories.

(Q4) Who are the developers of those apps?

Apps developed by the same entities may share similar

age verification methods, which can help identify common

strengths or weaknesses across different adult-only apps. To

this end, we analyzed all app developers and found that many

are already experienced in creating adult apps. For example,

the developers, OrderYOYO, have developed more than 80

adult-only apps. Additionally, we noticed a high concentration

of adult-only apps in the Finance and Shopping categories,

particularly from developers like OrderYOYO and City Hive
Inc. Further investigation revealed that these developers fo-

cus significantly on adult-oriented retail services, primarily

selling products such as alcohol and tobacco. Figure 5 shows

the developers who have created more than two adult-only

apps. Interestingly, we observed that the same developers of-

ten exhibit consistent user interface designs and workflows

across their apps. For instance, City Hive Inc. has developed

numerous adult-oriented apps focused on retail services, such

as alcohol and tobacco sales. To streamline development and

ensure consistency, they frequently reuse components and

templates throughout their product portfolio.

(Q5) How many of these apps have implemented age

validation mechanisms?

As shown in Table 7, our results show that there are only

1,165 (3.75%) adult-only apps that have implemented the age

verification. These results were determined by identifying

apps that implemented UI elements that accept confirmation

and concrete inputs, that instruct the user on types of concrete

input, and that display output that contains age verification

keywords. We also identified apps that implemented age verifi-

cation through code pattern matching to identify app code that

indicates age verification logic. The overall presence of age

verification is relatively low across most categories and rating

ranges. For example, apps with very high download numbers

(100,000+) still show a low percentage of age verification,

which is concerning given their wide reach and influence.

Particularly, we found that certain categories “Finance” and

“Business” show higher percentages of age verification apps

across rating and download ranges. We infer that these apps

target a more mature audience, typically adults engaged in

financial activities (gambling) or business operations (sell-

ing alcohol). Meanwhile, they are often subject to stringent

regulations to prevent fraud, money laundering, and to pro-

tect users from financial exploitation. These regulations often

mandate robust age verification mechanisms to ensure that fi-

nancial services are not accessible to minors. However, we do

not observe any particular verification mechanism being used

exclusively for a specific category or reason determining an

app’s adult-only status. Also, Apps with IAPs show slightly

higher percentages of age verification, which might be due to

the financial implications of ensuring that purchases are made

by appropriate age groups.

Without effective age verification, there is no reliable way

to ensure that users providing sensitive personal information

are of the intended age group, and the minors’ personal data

could be collected, stored, or even misused without adequate

safeguards. Such shortcomings amplify privacy concerns, as

younger users are less likely to grasp the implications of

sharing their data and are more susceptible to exploitation.

Notably, the collection of personal information from minors

is subject to stringent regulations designed to protect their

privacy and safety such as federal law and New York’s child

privacy law. Therefore, as shown in Table 8, we also display

the types of personal data collected by adult-only apps across

various categories. This is achieved by checking the strings

Ratings Downloads w/ IAP

[0.0,1.0) [1.0,2.0) [2.0,3.0) [3.0,4.0) [4.0,5.0) 0 - 100 100 - 1,000 1,000-10,000 10,000-100,000 100,000+

Category V # % V # % V # % V # % V # % V # % V # % V # % V # % V # % V # %

Lifestyle 0 9 0 2 59 3.39 7 288 2.43 43 1055 4.08 3 91 3.3 13 206 6.31 26 860 3.02 31 1350 2.3 44 1160 3.79 40 663 6.03 35 725 4.83
Other 0 1 0 0 1 0 2 21 9.52 0 28 0 1 2 50 2 8 25 2 16 12.5 0 42 0 1 43 2.33 1 37 2.7 1 36 2.78

Productivity 0 7 0 2 38 5.26 6 180 3.33 11 281 3.91 0 13 0 9 95 9.47 5 165 3.03 8 270 2.96 13 317 4.1 6 279 2.15 10 250 4
Travel & Local 0 7 0 0 13 0 0 24 0 1 55 1.82 0 6 0 2 43 4.65 1 64 1.56 2 124 1.61 4 97 4.12 2 42 4.76 3 100 3

Education 0 4 0 0 9 0 0 21 0 1 68 1.47 0 5 0 3 64 4.69 0 69 0 7 124 5.65 5 136 3.68 3 86 3.49 4 71 5.63
Finance 0 1 0 2 13 15.38 2 47 4.26 3 102 2.94 0 7 0 1 63 1.59 4 102 3.92 2 138 1.45 5 132 3.79 3 125 2.4 0 47 0

Business 1 4 25 0 5 0 4 37 10.81 4 49 8.16 0 5 0 5 104 4.81 2 156 1.28 5 148 3.38 5 87 5.75 1 41 2.44 3 19 15.79
Food & Drink 0 5 0 1 24 4.17 0 69 0 11 144 7.64 0 9 0 13 562 2.31 21 1016 2.07 27 646 4.18 22 284 7.75 20 136 14.71 3 59 5.08

News & Books 0 5 0 0 26 0 7 167 4.19 14 472 2.97 1 25 4 7 47 14.89 15 114 13.16 9 307 2.93 12 490 2.45 9 427 2.11 15 486 3.09
Health & Sports 1 8 12.5 2 30 6.67 3 118 2.54 7 278 2.52 0 13 0 6 69 8.7 8 152 5.26 8 265 3.02 12 294 4.08 7 248 2.82 13 365 3.56

Entertainment 1 44 2.27 6 223 2.69 57 1295 4.4 107 3133 3.42 5 98 5.1 33 600 5.5 77 1313 5.86 82 2044 4.01 74 2210 3.35 98 3289 2.98 131 3489 3.75
Social 0 53 0 16 351 4.56 37 1188 3.11 40 1289 3.1 2 51 3.92 18 361 4.99 51 772 6.61 44 1632 2.7 58 1948 2.98 59 1954 3.02 71 2913 2.44

Shopping 0 0 0 1 26 3.85 2 89 2.25 15 252 5.95 6 50 12 8 639 1.25 12 1144 1.05 26 457 5.69 26 256 10.16 22 151 14.57 1 10 10
Photography 0 4 0 1 22 4.55 2 66 3.03 6 156 3.85 0 5 0 1 33 3.03 10 47 21.28 4 85 4.71 1 130 0.77 2 171 1.17 3 101 2.97

Table 7: Distribution of age verification across app categories, ratings, downloads, and in-app purchases. “V” indicates whether

the app has implemented age verification mechanisms, “#” represents the number of apps, and “%” shows the percentage. Due to

incomplete metadata (e.g., download and ratings) in Androzoo, the total count adds up to less than the total number.

Category Fullname Address City Country

Entertainment 302 156 84 72
Social 170 79 47 32
Lifestyle 118 69 35 34
Food and Drink 95 53 19 34
Shopping 92 45 27 18
News and Books 40 16 9 7
Productivity 33 18 11 7
Health and Sports 26 12 5 7
Finance 17 5 4 1
Photography and Editors 15 8 4 4
Business 14 7 4 3
Education 13 7 3 4
Travel and Local 9 2 0 2
Other 4 2 2 0

Table 8: The types of personal data collected by adult apps

across various categories

of UI components co-located in the same layouts. These apps

require this information to ensure that the person interacting

with them can provide the necessary details to prove they are

a real person. It can be observed that entertainment apps have

the highest data collection, with 302 instances of full names,

154 instances of dates of birth, and 156 instances of addresses.

In contrast, business and finance apps collect minimal data

compared to other categories. The extensive collection of

personal data raises significant privacy concerns.

(Q6) What are the age verification mechanisms used

across different categories?

Different age verification methods can be identified based on

distinct code features. Age verification conducted locally is

categorized as an age gate. Similarly, entering ID informa-

tion with purely local validation constitutes a template-based

check. If the ID is transmitted to a remote server for validation,

it is classified as online ID verification. Credit card verifica-

tion can be identified through specific keywords and the use

of regular expressions, while document (ID) verification is

detectable through file upload APIs. Biometric verification

poses a greater challenge; however, we observed that many

biometric-based age verification mechanisms share consistent

code characteristics, such as leveraging Amazon [5] or Azure

Face APIs [35], which include age range validation function-

alities. This analysis allows us to generate a distribution of

verification methods across various categories.

It can be observed from Figure 6 that age gate emerges as

the most implemented method (31.84%), especially in cate-

gories like Entertainment and Lifestyle. Biometric Verifica-

tion (8.48%) are the least utilized methods, as shown by the

lower bars across all categories. Despite the accuracy and

robustness, the method involves higher costs, making it less

appealing to developers. Interestingly, we also notice that

Finance, Business and other categories that involving pay-

ments show the most consistent use of online ID and credit

card checks, highlighting regulatory pressure. Age gate and

template-based checks, being the weakest age verification

methods, are commonly employed in less mission-critical

apps, such as those in the entertainment, shopping, lifestyle,

and social categories.

Interestingly, we found that the “17+ rating” by Google

does not accurately reflect the age requirements set by many

app developers. Despite being rated as 17+, 152 apps actu-

ally enforce an age limit of 21 years (based on the collected

strings), which is higher than the rating suggests. We also

found that 309 apps set the bar at 16 years. Lowering the age

verification bar can result in younger users accessing content

that may not be suitable for their age group, potentially ex-

posing them to inappropriate or harmful material. Meanwhile,

our analysis revealed that all 21+ apps relied solely on the

weakest Age Gate verification, requiring only self-declared

age. In contrast, 63% of 16+ apps used stronger methods

like credit card or ID upload, likely due to stricter regulatory

Figure 6: Distribution of age verification methods by category.

scrutiny for younger audiences.

(Q7) Which types of discussed attacks are effective

against these adult apps with age verification?

We theoretically analyzed which verification methods might

be compromised by specific attack types (§6): age gates

(31.84%) were conclusively vulnerable to A1, template-based

checks to A2 (15.62%), and all other methods (e.g., online ID

verification, accounting for 8.67%, Credit Card Verification,

accounting for 17.59%, and document uploading, accounting

for 18.88%) except strict biometric authentication (8.48%)

to A4. To detect vulnerabilities to A3, we examined whether

apps implemented OAuth (32.53%), as its APIs are publicly

accessible, and determined that apps using OAuth could po-

tentially be exploited by A3. However, we could not evaluate

A5 and A6 due to their dependency on server-side implemen-

tations (e.g., whether login IP geo-restrictions are enforced),

as probing servers is both unethical and beyond the scope of

Android app analysis.

In terms of categories, as shown in Figure 7, Entertainment,

and Social categories exhibit significantly higher numbers of

Figure 7: Distribution of attacks across categories.

apps affected by all attack types compared to others. The anal-

ysis highlights that the “Entertainment” category dominates

across all attack types, with 142 cases of OAuth Trust-Chain

Abuse and 279 cases of Identifier Spoofing, far outpacing

other categories like “Food & Drink” (14 and 97 cases,

respectively) and “Finance” (8 and 46 cases, respectively).

In contrast, “Business” and “Education” exhibit significantly

lower vulnerabilities, with occurrences ranging between 2

and 18 cases across all attacks Similarly, “Fake ID Number

Self-Declaration” shows 89 cases in Entertainment, while

“Finance” and “Food & Drink” report none. This suggests that

attackers prioritize categories with larger user bases, such as

“Entertainment,” which accounts for over 60% of Identifier

Spoofing cases and 70% of OAuth Trust-Chain Abuse cases.

The high prevalence of attack vulnerabilities in the Enter-

tainment category suggests a lack of robust age verification

measures, likely due to their lower mission-critical nature and

a preference for prioritizing user accessibility over stringent

security. Finance and Business categories have relatively

fewer apps vulnerable to attacks. These categories likely face

stricter regulatory requirements, which compel developers

to implement more robust age verification mechanisms,

especially where financial transactions are involved.

8 Discussion

Mitigation. Mitigating vulnerabilities in age verification

mechanisms for adult-oriented apps requires a multi-faceted

approach that balances security, usability, and scalability. App

developers can implement strategies such as Multi-Factor Ver-

ification (MFV), which combines methods like ID checks

with biometric authentication, and Real-Time Database Ver-

ification to authenticate IDs against government databases.

Additional measures include IP Address Verification to block

VPN-based attacks, Behavioral Analytics to detect age fraud

through user interaction monitoring, and Ongoing Age Veri-

fication during critical interactions to maintain compliance.

Developers should also enforce consistent age verification

across all apps within an ecosystem and conduct regular se-

curity updates to address emerging threats. From Google’s

perspective, stricter developer guidelines, dynamic app test-

ing to identify bypass vulnerabilities, and leveraging user

feedback to address ineffective verification mechanisms are

critical. Google has committed to adopting dynamic testing

and user feedback measures, collaborating with stakeholders

to enhance the integrity of age-restricted apps. Please refer to

Appendix C for a detailed discussion.

Limitations. Our detection tool is not perfect and may be

subject to limitations. First, the accuracy of detecting age ver-

ification mechanisms heavily relies on taint analysis, which

might not be perfect and could miss certain data flows, espe-

cially in complex applications with obfuscated code. Second,

our dynamic analysis may not explore all possible paths in

some apps, particularly those that require valid input to access

deeper or more varied paths. However, we argue that age ver-

ification checks are typically positioned early in the app flow

and do not depend on extensive user input. These checks are

unlikely to be deeply embedded within the app. Our reasoning

is based on the nature of adult apps: if a user reaches deeper

states without encountering an age verification check, the

check becomes ineffective, as it implies the user—potentially

a child—has already been actively using the app. This ob-

servation is supported by our FP/FN analysis. Furthermore,

UI exploration is only necessary in rare cases where static

analysis fails to identify age verification mechanisms. Third,

since we can only collect the client-side code, the remote end

of the app is treated as a black box in our analysis, meaning

attacks involving the manipulation of back-end services may

not be accurately detected. For example, Attack A5 is feasible

because the back-end services do not enforce uniform age

verification across different countries, and the feasibility of

Attack A4 (OAuth abuse) depends on whether age verifica-

tion mechanisms are consistent across different apps. While

our results provide a useful reference, they may not be as

definitive as those for A1–A3. However, this limitation ap-

plies universally to all tools analyzing back-end services, as

actively probing servers and handling diverse traffic to ensure

back-end functionality raises ethical concerns. Additionally,

our static sampling and analysis of the apps revealed zero false

positives, further supporting the reliability of our analysis. Fi-

nally, the tool is specifically designed for mobile applications,

particularly Android apps, and may not be directly applicable

to web-based platforms or iOS apps. However, we argue that

the underlying principles remain the same.

9 Related Work

Age Verification. There have been several efforts focused on

age verification mechanisms for adult-only apps, primarily

from policy and regulatory perspectives [11, 26, 34, 36, 38, 39,

41, 55]. For example, one study reviewed the age verification

mechanisms in 10 social apps (e.g., Instagram, TikTok, Skype,

Facebook) [55]. The researchers manually opened these apps

and checked their compliance with policies such as GDPR.

However, this approach is insufficient, as technical solutions

are necessary to better understand and protect minors. A

few papers have focused on improving the performance

of age verification mechanisms [14, 24, 27, 29]. These

solutions include auditory perception-based methods [24],

audio-visual-based methods [29], and facial 3D-based

methods [27]. Unlike these efforts, our work is the first to

systematically analyze Android adult apps on Google Play

and investigate potential vulnerabilities.

Verification Mechanisms in Apps. There have also been

efforts focused on the verification mechanisms enforced by

Android [10,13,31–33,44,45,52,54]. For example, Hamid et

al. [10] detected flaws in the permission verification system.

VeriDroid [32] exposed potential defects in Android apps.

Wenbo et al. [52] used program analysis to detect flaws in

in-app payment verification. Haoyu et al. [45] identified se-

curity issues in the signature verification process of Android

apps. ACID [33] verified Android API compatibility issues by

selecting and executing relevant tests from an app’s test suite.

While previous works have focused on various verification

mechanisms, our paper specifically addresses age verification

mechanisms in adult apps.

10 Conclusion

Our paper has delved into the enforcement of age verifi-

cation mechanisms within adult-only apps and introduced

GUARD as a novel solution. Our comprehensive analysis of

31,750 adult-only apps on Google Play revealed a startlingly

low implementation rate of age verification, with only 3.67%

incorporating such mechanisms. Furthermore, even these

mechanisms can be easily bypassed with minimal techni-

cal skills, posing significant risks. Our work underscores the

inadequacies of current age verification methods in adult-

oriented apps and highlights the urgent need for more robust

countermeasures.

Ethics Considerations

It’s crucial to address ethical concerns meticulously to en-

sure that our research adheres to ethical standards and does

not inadvertently cause harm or violate privacy. First, we

did not use researchers’ personal data for dynamic analysis,

as our dynamic analysis operates without requiring any in-

puts, However, personal data was used to test the verification

mechanisms. Importantly, in our study, we only use our own

personal data to test the verification mechanisms and do not

use or store any personal data from other users (although as

discussed, other users information can be easily accessed on

the internet). To be more specific, when dynamically testing

potential attacks, we analyzed two scenarios involving the

input of ID numbers or other sensitive information. The first

scenario is the false ID declaration attack, where a randomly

generated false ID is used. The second scenario involves ID

spoofing, which requires the input of a real ID. For this, we

used our own personal data. We ensured that all team mem-

bers reviewed, understood, and consented to the use of their

data, in alignment with the privacy policies of the platforms in-

volved. We have completed the required Responsible Conduct

of Research training and other related certifications through

CITI. We uphold the highest ethical standards when testing

these apps and take every precaution to ensure that no one is

harmed during our research. Meanwhile, all sensitive infor-

mation, such as ID numbers and ID card photos, is securely

stored and anonymized to prevent any potential leaks. Second,

ethical guidelines require that no harm comes to the users

or systems being tested. We strictly limit our testing to our

own accounts and avoid any actions that could be construed

as hacking or attacking the apps. Finally, we reported our

findings to Google Play, as we believe Google should take

responsibility for ensuring that apps comply with age verifica-

tion requirements, given that the standards are set by Google.

Google acknowledged our findings and expressed gratitude

for our efforts. They noted that the specific implementation

of age verification measures can vary based on the type of

content and the developer’s chosen approach, making it chal-

lenging to verify age authentication comprehensively. Google

stated their plans to review the app, test whether its age verifi-

cation can be bypassed, and rely on user feedback to identify

complaints regarding age-inappropriate content or ineffective

age verification mechanisms. We will continue contacting and

working with Google to minimize the harm.

Open Science Policy

We have made our code publicly available in a repository

https://zenodo.org/records/14688696.

References

[1] 24kkkkkkk. Mt-arknights. https://github.com
/24kkkkkkk/MT-Arknights/tree/master, 2024.

Accessed: 2024-06-04.

[2] Alibaba. Taobao. https://www.taobao.com. Ac-

cessed: 2024-06-03.

[3] Alibaba. Xianyu. https://2.taobao.com. Ac-

cessed: 2024-06-03.

[4] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein,

and Yves Le Traon. Androzoo: Collecting millions

of android apps for the research community. In Pro-
ceedings of the 13th international conference on mining
software repositories, pages 468–471, 2016.

[5] Amazon Web Services. Amazon rekognition. https:
//aws.amazon.com/rekognition/. Accessed: 2024-

12-31.

[6] Amnesty International. Global: Tiktok’s ‘for you’

feed risks pushing children and young people towards

harmful mental health content. https://amnest
y.org/en/latest/news/2023/11/tiktok-risks
-pushing-children-towards-harmful-content/,

2024. Accessed: 2024-05-30.

[7] AppInChina. China implements govern-

ment system for real-name login. https:
//appinchina.co/blog/china-implements-g
overnment-system-for-real-name-login/, 2021.

Accessed: 2024-06-03.

[8] Appium. Appium: Mobile app automation made awe-

some. http://appium.io. Accessed: 2024-06-02.

[9] Steven Arzt, Siegfried Rasthofer, Christian Fritz,

Eric Bodden, Alexandre Bartel, Jacques Klein, Yves

Le Traon, Damien Octeau, and Patrick McDaniel. Flow-

droid: Precise context, flow, field, object-sensitive and

lifecycle-aware taint analysis for android apps. ACM
sigplan notices, 49(6):259–269, 2014.

[10] Hamid Bagheri, Eunsuk Kang, Sam Malek, and Daniel

Jackson. Detection of design flaws in the android per-

mission protocol through bounded verification. In FM
2015: Formal Methods: 20th International Symposium,
Oslo, Norway, June 24-26, 2015, Proceedings 20, pages

73–89. Springer, 2015.

[11] Scott Brennen and Matt Perault. Keeping kids safe

online: How should policymakers approach age verifi-

cation? The Center for Growth and Opportunity, 2023.

[12] Public Safety Canada. Online child sexual exploitation:

Booklet for parents and caregivers of kids aged 10-17.

https://www.canada.ca/en/public-safety-can
ada/campaigns/online-child-sexual-exploit
ation/booklet-for-parents-and-caregivers-o
f-kids-aged-10-17.html. Accessed: 2024-05-31.

[13] Yongliang Chen, Ruoqin Tang, Chaoshun Zuo, Xi-

aokuan Zhang, Lei Xue, Xiapu Luo, and Qingchuan

Zhao. Attention! your copied data is under monitoring:

A systematic study of clipboard usage in android apps.

In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, pages 1–13, 2024.

[14] Sahar Dammak, Hazar Mliki, and Emna Fendri. Face

age verification for access control application. In Four-
teenth International Conference on Machine Vision
(ICMV 2021), volume 12084, pages 157–163. SPIE,

2022.

[15] DigiChina. Translation: Cybersecurity law of the

people’s republic of china (effective june 1, 2017).

https://digichina.stanford.edu/work/transl
ation-cybersecurity-law-of-the-peoples-rep
ublic-of-china/, 2017. Accessed: 2024-05-30.

[16] Emma Henderson Vaughan. One third of

missing children enticed online are recov-

ered in a different state: New analysis.

https://www.missingkids.org/blog/2024/on
line-enticement-new-analysis-blog, 2024.

[Online; accessed 30-May-2024].

[17] Federal Communications Commission. Chil-

dren’s internet protection act (cipa). https:
//www.fcc.gov/consumers/guides/childrens-i
nternet-protection-act. Accessed: 2024-05-30.

[18] Daniel Fett, Ralf Küsters, and Guido Schmitz. A com-

prehensive formal security analysis of oauth 2.0. In

Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 1204–

1215, 2016.

[19] Getnewidentity.Com. Random chinese id number gener-

ator. https://www.getnewidentity.com/chinese
-id-number-generator.php. Accessed: 2024-06-03.

[20] Google. Android developer documentation. https:
//developer.android.com/docs, 2024. Accessed:

2024-12-29.

[21] Australian Government. Online safety act 2021.

https://www.legislation.gov.au/C2021A00076/latest/text,

2021. Accessed: 2024-05-31.

[22] ICLG. Cybersecurity laws and regulations japan

2024. https://iclg.com/practice-areas/cyb
ersecurity-laws-and-regulations/japan. Ac-

cessed: 2024-05-30.

[23] ICLG. Digital business laws and regulations france

2024. https://iclg.com/practice-areas/digit
al-business-laws-and-regulations/france. Ac-

cessed: 2024-05-30.

[24] Muhammad Ilyas, Alice Othmani, Régis Fournier, and

Amine Nait-Ali. Auditory perception based anti-

spoofing system for human age verification. Electronics,

8(11):1313, 2019.

[25] Korean Legislation Research Institute. Youth protection

act. https://elaw.klri.re.kr/eng_service/la
wViewTitle.do?hseq=8716. Accessed: 2024-05-31.

[26] Ahmad Jamaludin. Age verification regulation in social

media platform usage: Preventive measures against on-

line child sexual violence. Jurnal Bina Mulia Hukum,

8(2):276–295, 2024.

[27] Marie Jandová, Marek Daňko, and Petra Urbanová. Age

verification using random forests on facial 3d landmarks.

Forensic Science International, 318:110612, 2021.

[28] Ben Jiang. Chinese social media platforms weibo,

wechat and douyin’s real-name authentication rule for

influencers to benefit operations amid tightened online

regulation, analysts say. https://www.scmp.com
/tech/policy/article/3239986/chinese-socia
l-media-platforms-weibo-wechat-and-douyins
-real-name-authentication-rule-influencers,

2023. Accessed: 2024-05-30.

[29] Pavel Korshunov and Sébastien Marcel. Face anthro-

pometry aware audio-visual age verification. In Pro-
ceedings of the 30th ACM International Conference on
Multimedia, pages 5944–5951, 2022.

[30] IT Media Law. Interstate treaty on the pro-

tection of minors in the media (jmstv).

https://itmedialaw.com/en/wissensdatenba
nk/interstate-treaty-on-the-protection-o
f-minors-in-the-media-jmstv/. Accessed:

2024-05-30.

[31] Chongqing Lei, Zhen Ling, Yue Zhang, Kai Dong,

Kaizheng Liu, Junzhou Luo, and Xinwen Fu. Do not

give a dog bread every time he wags his tail: Steal-

ing passwords through content queries (CONQUER)

attacks. In 30th Annual Network and Distributed System
Security Symposium, NDSS 2023, San Diego, California,
USA, February 27 - March 3, 2023. The Internet Society,

2023.

[32] Yepang Liu and Chang Xu. Veridroid: Automating

android application verification. In Proceedings of
the 2013 Middleware Doctoral Symposium, pages 1–6,

2013.

[33] Tarek Mahmud, Meiru Che, and Guowei Yang. Detect-

ing android api compatibility issues with api differences.

IEEE Transactions on Software Engineering, 2023.

[34] Christine Marsden. Age-verification laws in the era of

digital privacy. Nat’l Sec. LJ, 10:210, 2023.

[35] Microsoft Corporation. Azure face api.

https://azure.microsoft.com/en-us/serv
ices/cognitive-services/face/. Accessed:

2024-12-31.

[36] Clare Morell and John Ehrett. Age verification: Policy

ideas for states. https://eppc.org/publication
/age-verification-policy-ideas-for-states/.

Accessed: 2024-06-03.

[37] International Association of Privacy Profession-

als (IAPP). How brazil regulates children’s privacy

and what to expect under the new data protection law.

https://iapp.org/news/a/how-brazil-regulat
es-childrens-privacy-and-what-to-expect-u
nder-the-new-data-protection-law/. Accessed:

2024-05-31.

[38] Liliana Pasquale and Paola Zippo. A review of age veri-

fication mechanism for 10 social media apps. CyberSafe
Ireland, May 2020.

[39] Liliana Pasquale, Paola Zippo, Cliona Curley, Brian

O’Neill, and Marina Mongiello. Digital age of consent

and age verification: Can they protect children? IEEE
Software, 39(3):50–57, 2020.

[40] Semmle. Codeql: Querying code as data. https:
//codeql.github.com/, 2024. Accessed: 2024-12-

24.

[41] Xiangbo Shu, Guo-Sen Xie, Zechao Li, and Jinhui Tang.

Age progression: Current technologies and applications.

Neurocomputing, 208:249–261, 2016.

[42] Veratad Technologies. Louisiana act 440 age

verification faqs: Staying compliant. https:
//veratad.com/blog/louisiana-act-440-age
-verification-faqs-staying-compliant, 2024.

Accessed: 2024-12-21.

[43] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie

Hendren, Patrick Lam, and Vijay Sundaresan. Soot:

A java bytecode optimization framework. In CASCON
First Decade High Impact Papers, pages 214–224. 2010.

[44] Chao Wang, Yue Zhang, and Zhiqiang Lin. Uncovering

and exploiting hidden apis in mobile super apps. In

Weizhi Meng, Christian Damsgaard Jensen, Cas Cre-

mers, and Engin Kirda, editors, Proceedings of the 2023
ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2023, Copenhagen, Denmark,
November 26-30, 2023, pages 2471–2485. ACM, 2023.

[45] Haoyu Wang, Hongxuan Liu, Xusheng Xiao, Guozhu

Meng, and Yao Guo. Characterizing android app signing

issues. In 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages

280–292. IEEE, 2019.

[46] Wikipedia. Children’s code. https://en.wikiped
ia.org/wiki/Children%27s_Code. Accessed: 2024-

05-30.

[47] Wikipedia. Information technology rules, 2021.

https://en.wikipedia.org/wiki/Information_
Technology_Rules,_2021. Accessed: 2024-05-31.

[48] Wikipedia. Proposed uk internet age verification sys-

tem. https://en.wikipedia.org/wiki/Propos
ed_UK_Internet_age_verification_system. Ac-

cessed: 2024-05-31.

[49] Wikipedia. Protection of young persons act (germany).

https://en.wikipedia.org/wiki/Protection_o
f_Young_Persons_Act_(Germany), 2003. Accessed:

2024-05-30.

[50] World Health Organization. One in six school-aged

children experiences cyberbullying: New who/europe

study. https://www.who.int/europe/news/item
/27-03-2024-one-in-six-school-aged-childre
n-experiences-cyberbullying--finds-new-who
-europe-study, 2024. Accessed: 2024-05-30.

[51] Biwei Yan, Kun Li, Minghui Xu, Yueyan Dong, Yue

Zhang, Zhaochun Ren, and Xiuzhen Cheng. On protect-

ing the data privacy of large language models (llms): A

survey. arXiv preprint arXiv:2403.05156, 2024.

[52] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Hui Liu, Qing

Wang, Yueheng Zhang, and Dawu Gu. Show me the

money! finding flawed implementations of third-party

in-app payment in android apps. In NDSS, 2017.

[53] Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo

Sun, and Yue Zhang. A survey on large language model

(llm) security and privacy: The good, the bad, and the

ugly. High-Confidence Computing, page 100211, 2024.

[54] Yue Zhang, Yuqing Yang, and Zhiqiang Lin. Don’t leak

your keys: Understanding, measuring, and exploiting

the appsecret leaks in mini-programs. In Weizhi Meng,

Christian Damsgaard Jensen, Cas Cremers, and Engin

Kirda, editors, Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security,
CCS 2023, Copenhagen, Denmark, November 26-30,
2023, pages 2411–2425. ACM, 2023.

[55] Paola Zippo and Liliana Pasquale. 2019 technical report:

A review of age verification mechanism for 10 social

media apps. Technological University Dublin, 2019.

A Algorithm for Dynamic Age Verification

As shown in Algorithm 1, the dynamic age verification analy-

sis systematically explores Android applications to identify

age verification mechanisms by simulating user interactions

and analyzing UI components. It begins by launching the

app and extracting the XML structure of the initial UI, which

contains details about UI elements such as buttons, text fields,

and labels. The algorithm iteratively examines each element,

searching for keywords such as “age,” “birthdate,” or “verify”
that suggest relevance to age verification. When a relevant

element is found, its identifier and type are recorded for fur-

ther analysis, and the current UI analysis terminates. For ele-

ments with click functionality, the algorithm simulates clicks

to navigate to new screens, recursively analyzing each newly

loaded interface. This dynamic and recursive process ensures

thorough exploration of all navigable paths within the app,

uncovering hidden or dynamically loaded components.

Algorithm 1 Dynamic Age Verification Analysis

1: procedure ANALYZEAPP(A)

2: LAUNCH(A)

3: ANALYZEAPPUI(A → UI1st)

4: end procedure
5: function ANALYZEAPPUI(UI)

6: XML ← ExtractCurrentInterface(UI)
7: for each ele ∈ XML do
8: if SEARCHKEYWORDS(ele) then
9: RECORD(ele → ID, ele → type)

10: return
11: end if
12: clickables ← findClickables(ele)
13: for each c ∈ clickables do
14: UIi ← CLICK(c)

15: ANALYZEAPPUI(UIi)
16: end for
17: end for
18: end function

B Code Snippet

B.1 Code Snippet of Dating Wallet
This code snippet is part of a login selection UI for an An-

droid application, supporting third-party login methods such

as Xiaomi and QQ accounts. It sets UI texts to guide the

user in selecting a login method, dynamically assigns IDs

to views using their hashCode, and applies layout parame-

ters for proper sizing. Resource utilities are used to fetch

assets or configurations for the respective login methods. Ad-

ditionally, the a() method includes a dynamic analysis or

proxy-checking mechanism, likely part of a framework for

hotfixes or method interception, which skips execution if cer-

tain conditions are met. This implementation connects to the

provided OAuth security concerns, where inconsistent age

verification mechanisms can be exploited.

B.2 Code Snippet of Peeks Social
As shown in Figure 10, Peeks Social, a dating app, requires

users to upload a photo of their ID for age verification. The

1 this.d.setText("Please select your login method");
2 LinearLayout.LayoutParams linearLayout$LayoutParams0 = new

LinearLayout.LayoutParams(-2, -2);↪→
3 miTextView1.setId(miTextView1.hashCode());
4 this.e.setText("Log in with Xiaomi Account");
5 ResourceUtils.c(this.getContext(),

"mio_login_third_account_mi_pure")↪→
6 miTextView2.setId(miTextView2.hashCode());
7 this.e.setText("Log in with QQ Account");
8 ResourceUtils.c(this.getContext(),

"mio_login_third_account_qq_pure")↪→
9 ...

10 public void a() {
11 if(PatchProxy.proxy(new Object[0], this,

LoginSelectLoginAccount.changeQuickRedirect, false,
0x206, new Class[0], Void.TYPE).isSupported) {

↪→
↪→

12 return;}}

Figure 8: The code snippet of app Dating Wallet

app extracts information such as the user’s name and zip code

from the photo to verify their age. However, this method has

vulnerabilities. For instance, the app’s reliance on photo up-

loads and basic data extraction makes it susceptible to attacks.

Minors could potentially manipulate or forge ID photos to by-

pass the verification process, compromising the app’s security

and effectiveness in preventing underage access.

1 this.n.takePicture(null, null, this.u);
2 if(bundle0 != null) {
3 Intent intent0 = new Intent(this,

WithdrawStepAlmost.class);↪→
4 intent0.putExtra("firstname",

bundle0.getString("firstname"));↪→
5 intent0.putExtra("lastname",

bundle0.getString("lastname"));↪→
6 intent0.putExtra("zipcode",

bundle0.getString("zipcode"));↪→
7 ...
8

9 if(this.s != null) {
10 intent0.putExtra("imagepath", this.s);}
11 }
12 //Upload all the infomation and Photo ID
13 if(!this.B) {
14 l.a().a(this, "Uploading...", 60000L, false,

15027);↪→
15 com.peeks.app.mobile.f.c.a().r()
16 .a(com.peeks.app.mobile.f.c.a().i()
17 .getUser_id(), this.r, this.p.getCode(),

this.q.getAbsolutePath(), null, this.t);↪→
18 return;
19 }

Figure 9: The code snippet of app Peeks Social

B.3 Code Snippet of MT-Arknights
The provided code snippet illustrates a function, request,

within the MT-Arknights tool, designed to bypass age verifica-

tion and payment restrictions in the game Arknights through a

MitM proxy. The function intercepts HTTP requests between

the client and server, targeting specific endpoints related to

age verification and payment processes. It iterates through

a list (fklist) of targeted URLs, checks if the request host

1 def request(self, flow: HTTPFlow):
2 for cgi in self.fklist:
3 if cgi in flow.request.url and "biligame.net" in

flow.request.host and not self.FirstLogin:↪→
4 ttime = time.strftime("%Y-%m-%d %H:%M:%S",

time.localtime())↪→
5 print("[%s]Intercepted age verification request:

%s" %↪→
6 (ttime, flow.request.url))
7 flow.kill()
8 if "api/client/can_pay" in flow.request.url and

"biligame.net" in flow.request.host:↪→
9 ttime = time.strftime("%Y-%m-%d %H:%M:%S",

time.localtime())↪→
10 print("[%s]Modified payment restriction" %
11 (ttime, flow.request.url)))

Figure 10: The code snippet of attacking tool MT-Arknights

is “biligame.net,” and if the user is not logging in for

the first time, it terminates the age verification request using

flow.kill() to prevent it from reaching the server. Addition-

ally, it identifies requests involving payment restrictions (e.g.,

containing “api/client/can_pay”) and modifies them to

bypass these limitations, logging all actions for reference.

This approach aligns with how MitM tools operate: intercept-

ing, logging, and altering network traffic to exploit insuffi-

ciently secured communication protocols. By terminating or

modifying critical requests, the tool effectively circumvents

server-side checks, enabling minors to bypass age restrictions

or payment barriers with minimal effort.

C Mitigation

For app developers, addressing the vulnerabilities identified

in age verification mechanisms for adult-oriented apps re-

quires the adoption of robust strategies to enhance security

while maintaining usability. As outlined in Table 9, the fol-

lowing mitigation strategies can be implemented either indi-

vidually or in combination to create a tailored approach that

balances these critical aspects. Particularly, we advocate for

a tailored approach rather than imposing a one-size-fits-all

countermeasure, recognizing that different applications have

distinct security requirements.

(M1) Multi-Factor Verification (MFV): We can implement

MFV to add an additional layer of security by com-

bining multiple verification methods. For example, an

ID check can be paired with biometric authentication,

such as fingerprint or facial recognition, to enhance the

reliability of age verification processes.

(M2) Real-Time Database Verification: We should verify

user-provided information against real-time govern-

ment databases to ensure the authenticity of IDs and

other documents. This helps in detecting fake IDs.

(M3) IP Address Verification: We can use geolocation ser-

vices to detect and block IP addresses associated with

(M1) (M2) (M3) (M4) (M5) (M6) (M7)

(A1) False Age � � � � � � �
(A2) False ID � � � � � � �
(A3) OAuth Abuse � � � � � � �
(A4) ID Spoofing � � � � � � �
(A5) Age Downgrade � � � � � � �
(A6) Tool Based � � � � � � �

Table 9: Summary of Mitigation

VPN services. This can defend against attacks such as

age verification downgrade.

(M4) Behavioral Analytics: We can implement behavioral

analytics to monitor user interactions and detect anoma-

lies that might indicate age fraud or misuse of the veri-

fication process.

(M5) Ongoing Age Verification: We should continuously

verify the user’s age at regular intervals or during

critical interactions (e.g., whenever users access age-

restricted content) to ensure ongoing compliance.

(M6) Consistent Enforcement across Apps: We should en-

sure consistent enforcement of age verification across

all applications within the OAuth ecosystem to prevent

bypassing through third-party logins.

(M7) Regular Security Updates: We should conduct regular

security audits and updates to address new vulnerabili-

ties and threats, and to ensure that the age verification

of apps are up-to-date with the latest security standards

and technologies.

From Google’s perspective, mitigating the challenges of

age verification in apps requires robust measures that balance

security, usability, and scalability. First, Google can establish

stricter guidelines for developers to ensure the proper imple-

mentation of age verification mechanisms. Second, they can

introduce dynamic app testing during the review process to

simulate real-world attempts to bypass these mechanisms,

removing apps that fail to meet the required standards. Lastly,

they can rely on user feedback to identify issues related to

age-inappropriate content or ineffective verification, taking

prompt action based on these reports. Following our discus-

sion with Google, they have committed to adopting the second

and third solutions to address this issue, and we will collabo-

rate with them to minimize potential harm.

